1,490 research outputs found

    Quantifying co-benefits and disbenefits of Nature-based Solutions targeting Disaster Risk Reduction

    Get PDF
    Nature-based Solutions function (NBS) as an umbrella concept for ecosystem-based approaches that are an alternative to traditional engineering solutions for Disaster Risk Reduction. Their rising popularity is explained partly by their entailing additional benefits (so-called co-benefits) for the environment, society, and economy. The few existing frameworks for assessing cobenefits are lacking guidance on co-benefit pre-assessment that is required for the NBS selection and permission process. Going beyond these, this paper develops a comprehensive guidance on quantitative pre-assessment of potential co-benefits and disbenefits of NBS tackling Disaster Risk Reduction. It builds on methods and frameworks from existing NBS literature and related disciplines. Furthermore, this paper discusses the evaluation of the quantified results of the pre-assessment. In particular, the evaluation focuses on the significance of change of the estimated co-benefits and dis-benefits as well as the sustainability of the NBS. This paper will support decision-making in planning processes on suitability and sustainability of Nature-based Solutions and assist in the preparation of Environmental Impact Assessments of projects

    Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: A new clinical paradigm in the treatment of triple-negative breast cancer.

    Get PDF
    The treatment of several solid and hematologic malignancies with immune checkpoint inhibitors (against PD-1/PD-L1) has dramatically changed the cancer treatment paradigm. However, no checkpoint inhibitors were previously approved for the treatment of triple-negative breast cancer (TNBC), a difficult-to-treat disease with a high unmet therapeutic need. Based on IMpassion130 clinical trial (NCT02425891), FDA has recently granted an accelerated approval for atezolizumab (TECENTRIQ®), a monoclonal antibody drug targeting PD-L1, plus chemotherapy (Abraxane; nab®-Paclitaxel) for the treatment of adults with PD-L1-positive, unresectable, locally advanced or metastatic TNBC. FDA has also approved the Ventana diagnostic antibody SP142 as a companion test for selecting TNBC patients for treatment with atezolizumab. In the present review, we briefly discuss the importance of this breakthrough as the first cancer immunotherapy regimen to be approved for the management of breast cancer

    Water-based and Biocompatible 2D Crystal Inks: from Ink Formulation to All- Inkjet Printed Heterostructures

    Full text link
    Fully exploiting the properties of 2D crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate, including plastic. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, available inkjet printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive formulation processing. In addition, none of those formulations are suitable for thin-film heterostructure fabrication due to the re-mixing of different 2D crystals, giving rise to uncontrolled interfaces, which results in poor device performance and lack of reproducibility. In this work we show a general formulation engineering approach to achieve highly concentrated, and inkjet printable water-based 2D crystal formulations, which also provides optimal film formation for multi-stack fabrication. We show examples of all-inkjet printed heterostructures, such as large area arrays of photosensors on plastic and paper and programmable logic memory devices, fully exploiting the design flexibility of inkjet printing. Finally, dose-escalation cytotoxicity assays in vitro also confirm the inks biocompatible character, revealing the possibility of extending use of such 2D crystal formulations to drug delivery and biomedical applications

    Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an in vivo zebrafish model

    Get PDF
    Graphene oxide (GO), an oxidised form of graphene, is widely used for biomedical applications, due to its dispersibility in water and simple surface chemistry tunability. In particular, small (less than 500 nm in lateral dimension) and thin (1-3 carbon monolayers) graphene oxide nanosheets (s-GO) have been shown to selectively inhibit glutamatergic transmission in neuronal cultures in vitro and in brain explants obtained from animals injected with the nanomaterial. This raises the exciting prospect that s-GO can be developed as a platform for novel nervous system therapeutics. It has not yet been investigated whether the interference of the nanomaterial with neurotransmission may have a downstream outcome in modulation of behaviour depending specifically on the activation of those synapses. To address this problem we use early stage zebrafish as an in vivo model to study the impact of s-GO on nervous system function. Microinjection of s-GO into the embryonic zebrafish spinal cord selectively reduces the excitatory synaptic transmission of the spinal network, monitored in vivo through patch clamp recordings, without affecting spinal cell survival. This effect is accompanied by a perturbation in the swimming activity of larvae, which is the locomotor behaviour generated by the neuronal network of the spinal cord. Such results indicate that the impact of s-GO on glutamate based neuronal transmission is preserved in vivo and can induce changes in animal behaviour. These findings pave the way for use of s-GO as a modulator of nervous system function

    Are we ready to transfer optical light to gamma-rays?

    Get PDF
    Scattering relativistic electrons with optical lasers can result in a significant frequency upshift for the photons, potentially producing γ\gamma-rays. This is what linear Compton scattering taught us. Ultra-intense lasers offer nowadays a new paradigm where multi-photon absorption effects come into play. These effects can result in higher harmonics, higher yields and also electron-positron pairs. This article intends to discriminate the different laser scenarios that have been proposed over the past years as well as to give scaling laws for future experiments. The energy conversion from laser or particles to high-frequency photons is addressed for both the well-known counter propagating electron beam-laser interaction and for Quantum-electrodynamics cascades triggered by various lasers. Constructing bright and energetic gamma-ray sources in controlled conditions is within an ace of seeing the light of day.Comment: 9 pages, 9 figure

    Epstein-Barr Virus and Human Papillomaviruses Interactions and Their Roles in the Initiation of Epithelial-Mesenchymal Transition and Cancer Progression.

    Get PDF
    Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein-Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial-mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast the initiation of EMT.This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    Magnetic field generation during intense laser channelling in underdense plasma

    Get PDF
    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion
    corecore